Year 10 Maths Sceme of Work

Edexcel Units 6-12 GCSE Textbook

Term	Lessons	Key Areas
Autumn 1	20	
Autumn 2	18	 Investigate features of straight line graphs Explore graphs of quadratic functions
Spring 1	18	 Explore graphs of other standard non-linear functions
Spring 2	15	 Create and use graphs of non-standard functions Solve kinematic problems
Summer 1	15	Understand and use set notation
Summer 2	15	 Solve inequalities Represent inequalities on a graph Explore exponential graphs Create and use graphs of non-standard functions Investigate gradients of graphs Find and interpret areas under graphs Investigate features of quadratic graphs Area and Perimeter of 2D and 3D shapes Explore transformations of 2D shapes
Total:	101	

Autumn 1: UNIT 6 – STRAIGHT LINE GRAPHS

GCSE EDEXCEL HIGHER TEXTBOOK

10 lessons

The Big Picture: Algebra progression map

Key concepts (GCSE subject content statements)

- identify and interpret gradients and intercepts of linear functions algebraically
- use the form *y* = *mx* + *c* to identify parallel lines
- find the equation of the line through two given points, or through one point with a given gradient
- interpret the gradient of a straight line graph as a rate of change
- recognise, sketch and interpret graphs of quadratic functions
- recognise, sketch and interpret graphs of simple cubic functions and the reciprocal function y = 1/x with $x \neq 0$
- plot and interpret graphs (including reciprocal graphs) and graphs of non-standard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration

		Return to overview	
Possible themes	Possible key learning points		
 Investigate features of straight line graphs Explore graphs of quadratic functions Explore graphs of other standard non-linear functions Create and use graphs of non-standard functions Solve kinematic problems 	 Identify and interpret gradients of linear functions algebraically Identify and interpret intercepts of linear functions algebraically Use the form y = mx + c to identify parallel lines Find the equation of a line through one point with a given gradient Find the equation of a line through two given points Interpret the gradient of a straight line graph as a rate of change Plot graphs of cubic functions Plot graphs of reciprocal functions 	 Recognise and sketch the graphs of quadratic functions Interpret the graphs of quadratic functions Recognise and sketch the graphs of cubic functions Interpret the graphs of cubic functions Recognise and sketch the graphs of reciprocal functions Interpret the graphs of reciprocal functions Interpret the graphs of non-standard functions in real contexts Find approximate solutions to kinematic problems involving distance, speed and acceleration 	
Prerequisites	Mathematical language	Pedagogical notes	
 Plot straight-line graphs Interpret gradients and intercepts of linear functions graphically and algebraically Recognise, sketch and interpret graphs of linear functions Recognise graphs of simple quadratic functions Plot and interpret graphs of kinematic problems involving distance and speed 	Function, equation Quadratic, cubic, reciprocal Gradient, y-intercept, x-intercept, root Sketch, plot Kinematic Speed, distance, time Acceleration, deceleration Linear, non-linear Parabola, Asymptote Rate of change Notation y = mx + c	This unit builds on the graphs of linear functions and simple quadratic functions work from Stage 8. Where possible, students should be encouraged to plot linear graphs efficiently by using knowledge of the <i>y</i> -intercept and the gradient. NCETM: Glossary Common approaches 'Monter' and 'commencer' are shared as the reason for 'm' and 'c' in $y = mx + c$ and links to $y = ax + b$. All student use dynamic graphing software to explore graphs	
Reasoning opportunities and probing questions	Suggested Activities	Possible misconceptions	
 Convince me the lines y = 3 + 2x, y - 2x = 7, 2x + 6 = y and 8 + y - 2x = 0 are parallel to each other. What is the same and what is different: y = x, y = x², y = x³ and y=1/x ? Show me a sketch of a quadratic (cubic, reciprocal) graph. And another. And another Sketch a distance/time graph of your journey to school. What is the same a what is different with the graph of a classmate? 	NRICH: Diamond Collector	 Some students do not rearrange the equation of a straight line to find the gradient of a straight line. For example, they think that the line y - 2x = 6 has a gradient of -2. Some students may think that gradient = (change in x) / (change in y) when trying to equation of a line through two given points. Some students may incorrectly square negative values of x when plotting graphs of quadratic functions. Some students think that the horizontal section of a distance time graph means an object is travelling at constant speed. Some students think that a section of a distance time graph with negative gradient means an object is travelling backwards or downhill. 	

Autumn 1: UNIT 6 – STRAIGHT LINE GRAPHS

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- solve linear inequalities in two variables
- represent the solution set to an inequality using set notation and on a graph

Return to overview

Possible themes	Possible key learning points		
 Understand and use set notation Solve inequalities Represent inequalities on a graph 	 Construct and shade a graph to sh Construct and shade a graph to sh Construct and shade a graph to re Find the set of integer coordinate 	 State the (simple) inequality represented by a shaded region on a graph Construct and shade a graph to show a linear inequality of the form y > ax + b, y < ax + b, y ≥ ax + b or y ≤ ax + b Construct and shade a graph to show a linear inequality in two variables stated implicitly Construct and shade a graph to represent a set of linear inequalities in two variables Find the set of integer coordinates that are solutions to a set of inequalities in two variables Use set notation to represent the solution set to an inequality 	
Prerequisites	Mathematical language	Pedagogical notes	
 Understand the meaning of the four inequality symbols Find the set of integers that are solutions to an inequality Use set notation to list a set of integers Use a formal method to solve an inequality in one variable Plot graphs of linear functions stated explicitly Plot graphs of linear functions stated implicitly 	(Linear) inequality Variable Manipulate Solve Solution set Integer Set notation Region Notation The inequality symbols: < (less than), > (greater than), \leq (less than or equal to), \geq (more than or equal to) A graph to represent solutions to inequalities in two variables. A dotted line represents a boundary that is not included. A solid line represents a boundary that is included. Set notation; e.g. {-2, -1, 0, 1, 2, 3, 4}	Pupils have explored the meaning of an inequality and solved linear inequalities in one variable in Stage 9. This unit focuses on solving linear equalities in two variables, representing the solution set using set notation and on a graph Therefore, it is important that pupils can plot the graphs of linear functions, including x = a and y = b. NCETM: <u>Departmental workshops: Inequalities</u> NCETM: <u>Glossary</u> Common approaches All students experience the use of dynamic graphing software, such as Autograph, to represent the solution sets of inequalities in two variables. Students are taught to manipulate algebraically rather than be taught 'tricks'. For example, in the case of -2x > 8, students should not be taught to flip the inequality when dividing by -2. They should be taught to add 2x to both sides. Many students will later generalise themselves. Note that with examples such as $5 < 1 - 4x < 21$, subtracting 1 from all three parts, and then adding 4x, results in $4 + 4x < 0 < 20 + 4x$. This could be broken down into two inequalities to discover that $x < -1$ and $x > -5$, so $-5 < x < -1$. The 'trick' results in the more unconventional solution $-1 > x > -5$.	
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions	
 Show me a pair of integers that satisfy x + 2y < 6. And another. And another Convince me that the set of inequalities x > 0, y > 0 and x + y < 2 has no positive integer solutions. Convince me that the set of inequalities x ≥ 0, y > 0 and x + 2y < 6 has 6 pairs of positive integer solutions. What is wrong with this statement? How can you correct it? The unshaded region represents the solution set for the inequalities: x < 1, y ≥ 0 and x + y > 6 	 KM: Linear programming with Lego KM: Linear programming (Autograph) KM: Stick on the Maths 8: Inequalities KM: Convinced?: Inequalities in two variables NRICH: Which is bigger? Hwb: How do we know? MAP: Defining regions using inequalities CIMT: Inequalities Learning review GLOWMaths/JustMaths: Sample Questions Both Tiers GLOWMaths/JustMaths: Sample Questions Higher Tiers 	 Some pupils may think that it is possible to multiply or divide both sides of an inequality by a negative number with no impact on the inequality (e.g. if -2x > 12 then x > -6) Some pupils may think that strict inequalities, such as y < 2x + 3, are represented by a solid, rather than dashed, line on a graph Some pupils may shade the incorrect region 	

Autumn 1: UNIT 6 – REAL LIFE AND OTHER GRAPHS

GCSE EDEXCEL HIGHER TEXTBOOK

The Big Picture: Algebra progression map

5 lessons

Return to overview

Key concepts (GCSE subject content statements)

- plot and interpret graphs (including exponential graphs) and graphs of non-standard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration
- calculate or estimate gradients of graphs and areas under graphs (including quadratic and other non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts
- interpret the gradient at a point on a curve as the instantaneous rate of change
- identify and interpret roots, intercepts, turning points of quadratic functions graphically

			Retuin to overview
Possible themes		Possible key learning points	
 Explore exponential graphs Create and use graphs of non-standard functions Investigate gradients of graphs Find and interpret areas under graphs Investigate features of quadratic graphs 		 Recognise that the gradient of a curve is Know that the gradient of a curve is Calculate the gradient at a point on Interpret the gradient at a point on Interpret the gradient of a chord as Solve problems involving the gradie Calculate an estimate for the area u Solve problems involving the area u 	ons ins to solve simple kinematic problems rve is not constant is the gradient of the tangent at that point a curve a curve as the instantaneous rate of change an average rate of change ents of graphs in context under a graph, including the area under a speed-time graph as distance
Prerequisites	Mathematical language		Pedagogical notes
 Plot graphs of linear, quadratic, cubic and reciprocal functions Interpret the gradient of a straight line graph as a rate of change Plot and interpret graphs of kinematic problems involving distance and speed 	Function, equation Linear, non-linear Quadratic, cubic, reciprocal, exponentia Parabola, Asymptote Gradient, y-intercept, x-intercept, root Rate of change Sketch, plot Kinematic Speed, distance, time Acceleration, deceleration Notation y = mx + c		 Pupils have met plotting graphs of non-standard functions and using graphs of non-standard functions to solve simple kinematic problems in Stage 9. This unit explores and deepens pupils' understanding of these concepts. However, they do not explicitly plot graphs of exponential functions until Stage 11. This unit also introduces the concept of gradient as an instantaneous change. Drawing tangents at different points on quadratic/cubic graphs and calculating an estimate of their gradients is a very powerful activity for pupils to appreciate the gradient can change. NCETM: Glossary Common approaches All pupils use dynamic graphing software, e.g. Autograph and the 'gradient value/function', to explore graphs
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Show me a sketch of an exponential graph. And another. And another What is the same and what is different: y = x², y = 2^x, y=1/2x and y = (1/2)^x? Always/Sometimes/Never: The gradient of a function is constant. Sketch a speed/time graph of your journey to school. What is the same and what is different with the graph of a classmate? 	KM: <u>Autograph: Pre-Calculus Activity</u> KM: <u>Autograph: The numerical gradien</u> NRICH: <u>What's that graph?</u> Hwb: <u>The 100m race</u> MAP: <u>Representing functions of everyd</u> ILIM: <u>Interpreting Distance Time Graph</u> GCSE: <u>Subject Knowledge Check - Tang</u> <u>curve</u> Learning review GLOWMaths/JustMaths: <u>Sample Quest</u> GLOWMaths/JustMaths: <u>Sample Quest</u> KM: <u>10M8 BAM Task</u>	- ay situations is ients to a curve and Areas under a ions Both Tiers	 Some pupils may think the graphs of all quadratic functions intercept the x-axis in one or two places. Some pupils may think that gradient has the same value for all points for all functions Some pupils may join the graph of y = a^x (a>1) to the x-axis Some pupils think that the horizontal section of a distance time graph means an object is travelling at constant speed. Some pupils think that a section of a distance time graph with negative gradient means an object is travelling backwards or downhill.

Autumn 2: UNIT 7 – PERIMETER, AREA, VOLUME

GCSE EDEXCEL HIGHER TEXTBOOK

3 lessons

Key concepts (GCSE subject content statements)

- identify and apply circle definitions and properties, including: tangent, arc, sector and segment
- calculate arc lengths, angles and areas of sectors of circles
- calculate surface area of right prisms (including cylinders)
- calculate exactly with multiples of π
- know the formulae for: Pythagoras' theorem, $a^2 + b^2 = c^2$, and apply it to find lengths in right-angled triangles in two dimensional figures

Return to overview

The Big Picture: Measurement and mensuration progression map

Possible themes	Possi	Possible key learning points	
 Solve problems involving arcs and sectors Solve problems involving prisms Investigate right-angled triangles Solve problems involving Pythagoras' theorem 		 Know circle definitions and properties, including: tangent, arc, sector and segment Calculate the arc length of a sector, including calculating exactly with multiples of π Calculate the area of a sector when the arc length and radius are known Calculate the surface area of a right prism Calculate the surface area of a cylinder, including calculating exactly with multiples of π Know and use Pythagoras' theorem Calculate the hypotenuse of a right-angled triangle using Pythagoras' theorem in two dimensional figures Solve problems using Pythagoras' theorem in two dimensional figures 	
Prerequisites	Mathematical language		Pedagogical notes
 Know and use the number π Know and use the formula for area and circumference of a circle Know how to use formulae to find the area of rectangles parallelograms 	Circle, Pi Radius, diameter, chord, circumference, arc, 1 (Right) prism, cylinder	tangent, sector, segment	This unit builds on the area and circle work form Stages 7 and 8. Students will need to be reminded of the key formula, in particular the importance of the perpendicular height when calculating areas and the correct use of πr^2 . Note:

•	Know and use the formula for area and circumference of a circle Know how to use formulae to find the area of rectangles, parallelograms, triangles and trapezia Know how to find the area of compound shapes	Radius, diameter, chord, circumference, arc, tangent, sector, segment (Right) prism, cylinder Cross-section Hypotenuse Pythagoras' theorem Notation π Abbreviations of units in the metric system: km, m, cm, mm, mm ² , cm ² , m ² , km ² , mm ³ , cm ³ , km ³	need to be reminded of the key formula, in particular the importance of the perpendicular height when calculating areas and the correct use of πr^2 . Note: some students may only find the area of the three 'distinct' faces when finding surface area. Students must experience right-angled triangles in different orientations to appreciate the hypotenuse is always opposite the right angle. NCETM: Glossary Common approaches Students visualize and write down the shapes of all the faces of a prism before calculating the surface area. Every classroom has a set of <u>area posters</u> on the wall. Pythagoras' theorem is stated as 'the square of the hypotenuse is equal to the sum of the squares of the other two sides' not just $a^2 + b^2 = c^2$.
R	easoning opportunities and probing questions	Suggested activities	Possible misconceptions
•	Show me a sector with area 25π . And another. And another Always/ Sometimes/ Never: The value of the volume of a prism is less than the value of the surface area of a prism. Always/ Sometimes/ Never: If $a^2 + b^2 = c^2$, a triangle with sides a, b and c is right angled. Kenny thinks it is possible to use Pythagoras' theorem to find the height of isosceles triangles that are not right- angled. Do you agree with Kenny? Explain your answer. Convince me the hypotenuse can be represented as a horizontal line.	 KM: <u>The language of circles</u> KM: <u>One old Greek</u> (geometrical derivation of Pythagoras' theorem. This is explored further in the next unit) KM: <u>Stick on the Maths: Pythagoras' Theorem</u> KM: <u>Stick on the Maths: Right Prisms</u> NRICH: <u>Curvy Areas</u> NRICH: <u>Changing Areas, Changing Volumes</u> Learning review KM: <u>9M10 BAM Task, 9M11 BAM Task</u> 	 Some students will work out (π × r)² when finding the area of a circle Some students may use the sloping height when finding cross-sectional areas that are parallelograms, triangles or trapezia Some students may confuse the concepts of surface area and volume Some students may use Pythagoras' theorem as though the missing side is always the hypotenuse Some students may not include the lengths of the radii when calculating the perimeter of an sector

GCSE EDEXCEL HIGHER TEXTBOOK

3 lessons

Key concepts (GCSE subject content statements)

- calculate surface area and volume of spheres, pyramids, cones and composite solids
- apply the concepts of congruence and similarity, including the relationships between length, areas and volumes in similar figures

Return to overview

The Big Picture: Measurement and mensuration progression map

Possible themes	Possible key learning points	
 Calculate surface areas of solids Calculate volumes of solids Solve problems involving enlargement and 3D shapes 	 Use Pythagoras' theorem to find le Find the surface area of spheres, co Find the volume of spheres, cones Identify how to find the volume or Solve practical problems involving Understand the implications of enl Understand the implications of enl Move freely between scale factors Solve practical problems involving 	ones and pyramids and pyramids surface area of a composite solid the surface area of solids the volume of solids argement on area argement on volume
 Prerequisites Calculate exactly with multiples of π Know and use the formula for area and circumference of a circle Know how to use formulae to find the area of rectangles, parallelograms, triangles, trapezia, circles, sectors and Know how to find the area of compound shapes Know how to find the surface area of a right prism and a cylinder Calculate the surface area of a right prism and a cylinder Carry out an enlargement Find the scale factor of a given enlargement Use Pythagoras' theorem to find missing lengths in right-angled triangles 	Mathematical language (Composite) solid Sphere, Pyramid, Cone Perpendicular (height), (slant height) Surface area Volume Congruent, congruence Similarity, similar shapes, similar figures Enlarge, enlargement Scale factor Notation π Abbreviations of units in the metric system: km, m, cm, mm, mm², cm², m², km², mm³, cm³, km³	Pedagogical notesPupils have previously learnt how to find the surface area of right prisms and cylinders in Stage 9. This unit focuses on finding the volume and surface areas of cones, spheres and pyramids.Pupils also explore congruence and similarity - the use of proportion tables can be helpful to find the multiplier when solving similarity problems such as: \hline Shape AShape AShape BKnown lengths69Missing lengths1015 $\rightarrow \times 1.5 \rightarrow$ NCETM:GlossaryCommon approaches Pupils explore the surface area of spheres using oranges (https://www.youtube.com/watch?v=cAxHYFRx1Fs) Pupils explore volumes of pyramids by making nets of pyramids and prisms with the same polygonal base and using sand or sugar to compare volumes.
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions
 Always/ Sometimes/ Never: The value of the volume of a pyramid is less than the value of the surface area of a pyramid. Always/ Sometimes/ Never: The value of the volume of a sphere is less than the value of the surface area of a sphere. Convince me that the volume of a pyramid = ¹/₃ × A × h Convince me that 1 m³ = 1 000 000 cm³ 	KM: Stick on the Maths 8: Congruence and Similarity KM: <u>Convinced?</u> Congruence and Similarity NRICH: <u>Surface Area and Volume</u> and <u>Nicely Similar</u> Hwb: <u>Summerhouse</u> and <u>Radiators</u> OCR: <u>Congruence Check In</u> and <u>Similarity Check In</u> Learning review GLOWMaths/JustMaths: <u>Sample Questions Both Tiers</u> GLOWMaths/JustMaths: <u>Sample Questions Higher Tiers</u> KM: <u>10M11 BAM Task</u>	 Some pupils will work out 4/3 × (π × r)³ when finding the volume of a sphere. Some pupils may confuse the concepts of surface area and volume Some pupils will work out 4 × (π × r)² when finding the surface area of a sphere. Some pupils may think the volume of a pyramid = ½ × A × h

Autumn 2: UNIT 8 – LOCI & CONSTRUCTIONS

GCSE EDEXCEL HIGHER TEXTBOOK

3 lessons

The Big Picture: Properties of Shape progression map

Key concepts (GCSE subject content statements)

- use the standard ruler and compass constructions (perpendicular bisector of a line segment, constructing a perpendicular to a given line from/at a given point, bisecting a given angle)
- use these to construct given figures and solve loci problems; know that the perpendicular distance from a point to a line is the shortest distance to the line
- construct plans and elevations of 3D shapes

			Retuilito overview
Possible themes		Possible key learning points	
 Know standard mathematical constructions Apply standard mathematical constructions Explore ways of representing 3D shapes 		Use ruler and compasses to bisect aUse a ruler and compasses to const	ruct a perpendicular to a line from a point and at a point f points a fixed distance from a point and from a line ci complex loci problems shapes; e.g. rhombus d elevations
Prerequisites	Mathematical language		Pedagogical notes
 Measure distances to the nearest millimetre Create and interpret scale diagrams Use compasses to draw circles Interpret plan and elevations 	Compasses Arc Line segment Perpendicular Bisect Perpendicular bisector Locus, Loci Plan Elevation		Ensure that students always leave their construction arcs visible. Arcs must be 'clean'; i.e. smooth, single arcs with a sharp pencil. NCETM: Departmental workshops: Constructions NCETM: Departmental workshops: Loci NCETM: Glossary Common approaches All students should experience using dynamic software (e.g. Autograph) to explore standard mathematical constructions (perpendicular bisector and angle bisector).
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 (Given a single point marked on the board) show me a point 30 cm away from this point. And another. And another Provide shapes made from some cubes in certain orientations. Challenge students to construct the plans and elevations. Do groups agree? If this is the plan:	KM: Construction instruction KM: Construction challenges KM: Napoleonic challenge KM: Circumcentre etcetera KM: Locus hocus pocus KM: The perpendicular bisector KM: Topple KM: Gilbert goat KM: An elevated position KM: Solid problems (plans and elevations) KM: Isometric interpretation (plans and elevations)		 When constructing the bisector of an angle some students may think that the intersecting arcs need to be drawn from the ends of the two lines that make the angle. When constructing a locus such as the set of points a fixed distance from the perimeter of a rectangle, some students may not interpret the corner as a point (which therefore requires an arc as part of the locus) The north elevation is the view of a shape from the north (the north face of the shape), not the view of the shape while facing north.
• Give students the equipment to create standard constructions and challenge them to create a right angle / bisect an angle	Learning review KM: <u>9M8 BAM Task</u>		

Autumn 2: UNIT 8 – TRANSFORMATIONS

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- identify, describe and construct similar shapes, including on coordinate axes, by considering enlargement (including fractional scale factors)
- make links between similarity and scale factors
- describe the changes and invariance achieved by combinations of rotations, reflections and translations

Return to overview

The Big Picture: Position and direction progression map

3 lessons

Possible themes	Possible key learning points		
 Explore enlargement of 2D shapes Investigate the transformation of 2D shapes 	 Find the scale factor of an enlarger Find the centre of an enlargement Solve problems involving similarity Perform a sequence of transformation 	 Use the centre and scale factor to carry out an enlargement of a 2D shape with a fractional scale factor Find the scale factor of an enlargement with fractional scale factor Find the centre of an enlargement with fractional scale factor Solve problems involving similarity Perform a sequence of transformations on a 2D shape Find and describe a single transformation given two congruent 2D shapes 	
Prerequisites	Mathematical language	Pedagogical notes	
 Use the centre and scale factor to carry out an enlargement of a 2D shape with a positive integer scale factor Use the concept of scaling in diagrams Carry out reflection, rotations and translations of 2D shapes 	Perpendicular bisector Scale Factor Similar Congruent Invariance Transformation Rotation Reflection Translation Enlargement	Pupils have identified, described and constructed congruent shapes using rotation, reflection and translation in Stage 7. They have also identified, described and constructed similar shapes using enlargement in Stage 8 and experienced enlarging shapes using positive integer scale factors in Stage 9. NCETM: <u>Glossary</u> Common approaches All pupils should experience using dynamic software (e.g. Autograph) to explore enlargements using fractional scale factors	
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions	
 Show me a pair of similar shapes. And another. And another Always/ Sometimes/ Never: The resulting image of an enlargement is larger than the original object Kenny thinks rotating an object 90° about the origin followed by a reflection in the y-axis has the same effect as reflecting an object in the y-axis followed by a rotation 90° about the origin. Do you agree with Kenny? Explain your answer. 	 KM: Enlargement 2 KM: Stick on the Maths SSM3: Enlargement (fractional scale factor) KM: Stick on the Maths SSM1: Congruence and similarity NRICH: Growing Rectangles Learning review GLOWMaths/JustMaths: Sample Questions Both Tiers GLOWMaths/JustMaths: Sample Questions Higher Tiers 	 Some pupils may think that the resulting image of an enlargement has to be larger than the original object. Some pupils may think that the order of transforming an object does not have an effect on the size and position of the final image. Some pupils may link scale factors and similarity using an additive, rather than multiplicative, relationship. 	

Key concepts (GCSE subject content statements)

• identify, describe and construct similar shapes, including on coordinate axes, by considering enlargement (including negative scale factors)

Possible themes		Possible key learning points	
Explore enlargement of 2D shapes Bring on the Maths: GCSE Higher Shape Manipulating shapes I: #5		 Use the centre and scale factor to carry out an enlargement of a 2D shape with a negative scale factor Find the scale factor of an enlargement with negative scale factor Find the centre of an enlargement with negative scale factor 	
Prerequisites	Mathematical language		Pedagogical notes
• Use the centre and scale factor to carry out an enlargement of a 2D shape with a positive scale factor	e Scale Factor Similar Transformation Enlargement		 Pupils have identified, described and constructed similar shapes using enlargement in Stage 8 and experienced enlarging shapes using positive integer scale factors in Stage 9. Stage 10 included enlargement using a fractional scale factor. NCETM: <u>Glossary</u> Common approaches All pupils should experience using dynamic software (e.g. Autograph) to explore enlargements using negative scale factors
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Always/ Sometimes/ Never: The resulting image of an enlargement is larger than the original object 	KM: <u>Enlargement 3</u> NRICH: <u>Transformation game</u> Learning review GLOWMaths/JustMaths: <u>Sample Ques</u>	tions Higher Tiers	 Some pupils may think that the resulting image of an enlargement has to be larger than the original object. Some pupils may link scale factors and similarity using an additive, rather than multiplicative, relationship.

Autumn 2 – Assessment

- 1.5 hourS non calculator Foundation Paper
- Self-assessment sheets completed
- Review and self-assessment of performance stuck into books

3 lessons

Return to overview

3 lessons

The Big Picture: Position and direction progression map

UNIT 9 – ALGEBRA

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- solve, in simple cases, two linear simultaneous equations in two variables algebraically
- derive an equation (or two simultaneous equations), solve the equation(s) and interpret the solution
- find approximate solutions to simultaneous equations using a graph

		Return to overview	
Possible themes	Possible key learning points		
 Solve simultaneous equations Use graphs to solve equations Solve problems involving simultaneous equations 	 Understand that there are an infinite number of solutions to the equation ax + by = c (a ≠ 0, b ≠ 0) Find approximate solutions to simultaneous equations using a graph Solve two linear simultaneous equations in two variables in very simple cases (addition but no multiplication required) Solve two linear simultaneous equations in two variables in very simple cases (subtraction but no multiplication required) Solve two linear simultaneous equations in two variables in very simple cases (subtraction but no multiplication required) Solve two linear simultaneous equations in two variables in very simple cases (addition or subtraction but no multiplication required) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required with addition) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required with subtraction) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required with addition) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required with addition or subtraction) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required with addition or subtraction) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required with addition or subtraction) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required with addition or subtraction) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required with addition or subtraction) Solve two linear simultaneous equations in two variables in simple cases (multiplication of		
Prerequisites	Mathematical language	Pedagogical notes	
 Solve linear equations Substitute numbers into formulae Plot graphs of functions of the form y = mx + c, x ± y = c and ax ± by = c) Manipulate expressions by multiplying by a single term 	Equation Simultaneous equation Variable Manipulate Eliminate Solve Derive Interpret	Students will be expected to solve simultaneous equations in more complex cases in Stage 10. This includes involving multiplications of both equations to enable elimination, cases where rearrangement is required first, and the method of substitution. NCETM: <u>Glossary</u> Common approaches Students are taught to label the equations (1) and (2), and label the subsequent equation (3) Teachers use graphs (i.e. dynamic software) to demonstrate solutions to simultaneous equations at every opportunity	
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions	
 Show me a solution to the equation 5a + b = 32. And another, and another Show me a pair of simultaneous equations with the solution x = 2 and y = -5. And another, and another Kenny and Jenny are solving the simultaneous equations x + 4y = 7 and x - 2y = 1. Kenny thinks the equations should be added. Jenny thinks they should be subtracted. Who do you agree with? Explain why. 	KM: <u>Stick on the Maths ALG2: Simultaneous linear equations</u> NRICH: <u>What's it worth?</u> NRICH: <u>Warmsnug Double Glazing</u> NRICH: <u>Arithmagons</u> Learning review KM: <u>9M5 BAM Task</u>	 Some students may think that addition of equations is required when both equations involve a subtraction Some students may not multiply all coefficients, or the constant, when multiplying an equation Some students may think that it is always right to eliminate the first variable Some students may struggle to deal with negative numbers correctly when adding or subtracting the equations 	

Key concepts (GCSE subject content statements)

- find approximate solutions to equations numerically using iteration
- solve two linear simultaneous equations in two variables algebraically

Possible themes		Possible key learning points	Recurrice overview
 Find approximate solutions to complex equations Solve simultaneous equations Solve problems involving simultaneous equations 		 Understand the meaning of an itera Show that a solution to a complex e Use an iterative formula to find app Use an iterative formula to find app Solve two linear simultaneous equates Solve two linear simultaneous equates 	equation lies between two given values proximate solutions to equations proximate solutions, to a given number of decimal places, to an equation ations in two variables by substitution ations in two variables by elimination (multiplication of both equations ations in two variables by elimination (fractional coefficients) equations in complex cases
	Mathematical language	Pedagogical notes	
 Understand the concept of solving simultaneous equations by elimination Solve two linear simultaneous equations in two variables in very simple cases (no multiplication required) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required) 	Unknown Solve Solution set Interval Decimal search Iteration Simultaneous equations Substitution Elimination Notation (a, b) for an open interval [a, b] for a closed interval	below). 'Decimal search' includes 'trial Having been introduced to iterative pro non-linear equations. GCSE examples of Pupils have been introduced to solving includes either no multiplication being simultaneous equations using substitut NCETM: <u>Departmental workshops: Sim</u> NCETM: <u>Glossary</u> Common approaches Pupils are taught to label the equations	simultaneous equations using elimination in simple cases in Stage 9. This required or multiplication of just one equation being required. Solving tion is new to this Stage.
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Show me a pair of simultaneous equations with a solution x = 4, y = -2. And another. And another Convince me x + 2y = 11, 3x + 4y = 18 can be solved using substitution and using elimination. Which method is best in this case? Always/ Sometimes/ Never: Solving a pair of simultaneous equations using elimination is more efficient than using substitution 	KM: Introduce iterative processes (in this example, interval bisection) by challenging students to find your chosen number (between 1 and 1000000) when the only clue is 'bigger' or smaller' after each guess. Compare the final number of guesses with 20 (since 2 ²⁰ is close to 1000000 and students will probably have very quickly developed a process of roughly bisecting intervals). KM: Babylonian square roots – an introduction to iterative processes KM: Pre-iteration KM: Iteration KM: Convinced?: ALG2 Simultaneous linear equations NRICH: Matchless AQA: Bridging Units Resource Pocket 4 GLOWMaths/JustMaths: Sample Questions Both Tiers GLOWMaths/JustMaths: Sample Questions Higher Tiers KM: 1004 BAM Task		 Some pupils may not check the solution to a pair of simultaneous equations satisfy both equations Some pupils may not multiply all coefficients, or the constant, when multiplying an equation Some pupils may struggle to deal with negative numbers correctly when adding or subtracting the equations

UNIT 9 – SOLVING QUADRATIC EQUATIONS

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- solve quadratic equations by completing the square and by using the quadratic formula
- deduce turning points of quadratic functions by completing the square
- deduce roots of quadratic functions algebraically
- work with general iterative processes

D	 	4		
			over	

Possible themes	Possible key learning points	Possible key learning points	
 Solve quadratic equations Solve practical problems involving quadratic equations Understand and use iterative processes Bring on the Maths: GCSE Higher Algebra Solving quadratic equations: #6, #8, #9, #10, #11, #12	 Deduce the roots of a quadratic fu Know and apply the formula for so Know and apply the formula for so Solve equations involving fraction Solve problems in probability that Solve problems involving quadratic 	tic expression (a > 1) by completing the square by completing the square dratic function by completing the square inction using the completed square form blving a simple quadratic equation of the form $ax^2 + bx + c = 0$ blving more complex quadratic equation of the form $ax^2 + bx + c = 0$ s that can be rearranged into the form $ax^2 + bx + c = 0$ generate a quadratic equation	
Prerequisites	Mathematical language	Pedagogical notes	
 Solve a quadratic equation by rearranging and factorising Identify when a quadratic equation cannot be solved by factorising Calculate fluently with negative numbers Rearrange algebraic expressions and equations Understand and use interval bisection Rearrange an equation to form an iterative formula 	(Quadratic) equation Factorise Rearrange Complete the square Unknown Manipulate Maximum, minimum Parabola Recurrence relation Interval bisection Notation The form $(x + p)^2 - q$ usually implies that completing the square is required Recurrence relations are equations such as $x_{n+1} = 2x_n - 3$	Problems involving quadratic equations include, for example, shapes with dimensions expressed algebraically and area given. Students have previously explored a range of iterative processes. They should now choose an appropriate method given the situation they are faced with. Common approaches All pupils investigate geometric representations of completing the square All pupils derive the formula for solving a quadratic equation by completing the square	
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions	
 Always / sometimes / never: a quadratic equation has two solutions (justify using values of <i>a</i>, <i>b</i> and <i>c</i>) Show me an example of a quadratic equation with one solution. And another, and another, Explore geometric representations of completing the square. Make connections between the geometry and the algebra to make sense of the name of the process 	NRICH: <u>Proof sorter – quadratic equation</u> NRICH: <u>Geometric parabola</u> Learning review KM: <u>11M2 BAM Task</u> , <u>11M3 BAM Task</u> GLOWMaths/JustMaths: <u>Sample Questions Higher Tiers</u>	 Some students may attempt to always substitute positive values for <i>a</i>, <i>b</i> and <i>c</i> when using ax² + bx + c = 0 Some students may forget that squaring a negative number results in a positive solution Some students may think that (x + p)² - q implies that p must be positive 	

UNIT 10 - PROBABILITY

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions
- enumerate sets and combinations of sets systematically, using tree diagrams
- understand that empirical unbiased samples tend towards theoretical probability distributions, with increasing sample size

Return to overview

The Big Picture: Probability progression map

Possible themes		Possible key learning points	
 Understand and use tree diagrams Develop understanding of probability in situations involving combined eve Use probability to make predictions 	nts	 Use a tree diagram to solve comple Use a tree diagram to solve simple Use a tree diagram to solve comple 	v of probability
Prerequisites	Mathematical language		Pedagogical notes
 Add fractions (decimals) Multiply fractions (decimals) Convert between fractions, decimals and percentages Use frequency trees to record outcomes of probability experiments Use experimental and theoretical probability to calculate expected outcomes 	Outcome, equally likely outcomes Event, independent event, dependent event, independent event, dependent event Tree diagrams Theoretical probability Experimental probability Random Bias, unbiased, fair Relative frequency Enumerate Set Notation P(A) for the probability of event A Probabilities are expressed as fractions, not be expressed as ratios (which repre	, decimals or percentage. They should	Tree diagrams can be introduced as simply an alternative way of listing all outcomes for multiple events. For example, if two coins are flipped, the possible outcomes can be listed (a) systematically, (b) in a two-way table, or (c) in a tree diagram. However, the tree diagram has the advantage that it can be extended to more than two events (e.g. three coins are flipped). NCETM: Glossary Common approaches All students carry out <u>the drawing pin experiment</u> Students are taught not to simply fractions when finding probabilities of combined events using a tree diagram (so that a simple check can be made that the probabilities sum to 1)
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Show me an example of a probability problem that involves adding (multiplying) probabilities Convince me that there are eight different outcomes when three coins are flipped together Always / Sometimes / Never: increasing the number of times an experiment is carried out gives an estimated probability that is closer to the theoretical probability 	KM: Stick on the Maths: Tree diagrams KM: Stick on the Maths: Relative frequency KM: The drawing pin experiment Learning review KM: 9M13 BAM Task		 When constructing a tree diagram for a given situation, some students may struggle to distinguish between how events, and outcomes of those events, are represented Some students may muddle the conditions for adding and multiplying probabilities Some students may add the denominators when adding fractions

UNIT 10 – PROBABILITY

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- apply systematic listing strategies including use of the product rule for counting
- calculate and interpret conditional probabilities through representation using expected frequencies with two-way tables, tree diagrams and Venn diagrams.

Return to overview

The Big Picture: Probability progression map

Possible themes	Possible key learning points	
 Understand and use the product rule for counting Use Venn diagrams to represent probability situations Use two-way tables to represent probability situations Solve probability problems involving combined events 	 Apply the product rule for countin Use a Venn diagram to sort inform Use a two-way table to sort inform Use a Venn diagram to calculate t Use a two-way table to calculate t Calculate conditional probabilities 	nation in a probability problem mation in a probability problem cheoretical probabilities theoretical probabilities
Prerequisites	Mathematical language	Pedagogical notes
 Know when to add two or more probabilities Know when to multiply two or more probabilities Convert between fractions, decimals and percentages Use a tree diagram to calculate probabilities of dependent and independent combined events 	Outcome, equally likely outcomes Event, independent event, dependent event Tree diagrams Theoretical probability, experimental probability Random Bias, unbiased, fair Enumerate Set Conditional probability Venn diagram Notation P(A) for the probability of event A Probabilities are expressed as fractions, decimals or percentages. They should not be expressed as ratios (which represent odds) or as words	In Stage 9, pupils calculate the probability of independent and dependent combined events using tree diagrams and enumerate sets and combinations of sets systematically, using tree diagrams. This unit has a strong emphasis on the use of Venn diagrams and two-way tables to solve probability problems. Note: A Venn diagram has regions for all possible combinations of groups whether there are elements in those regions or not. An Euler diagram only shows a region if things exist in that region. NCETM: <u>Glossary</u> NCETM: <u>Department Workshops: Sets and Venn Diagrams</u> FMSP: <u>Set Notation Poster</u> Common approaches Pupils are taught to draw the border around the Venn 'regions' to highlight the elements that are not included in the regions.
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions
 Show me an example of a Venn diagram. And another. And another Show me an example of a two-way table. And another. And another Always / Sometimes / Never: All the regions of a Venn diagram must be populated 	CIMT: <u>Venn Diagrams</u> OCR: <u>Check In: Combined Events and Probability Diagrams</u> AQA: Bridging Unit: <u>Set notation, number lines and Venn diagrams</u> Learning review GLOWMaths/JustMaths: <u>Sample Questions Both Tiers</u> GLOWMaths/JustMaths: <u>Sample Questions Higher Tiers</u>	 When constructing a Venn diagrams for a given situation, some pupils may struggle to distinguish between elements that are included in the intersection of both regions or only in one of the regions Some pupils may muddle the conditions for adding and multiplying probabilities Some pupils may add the denominators when adding fractions

UNIT 11 – MULTIPLICATIVE REASONING

GCSE EDEXCEL HIGHER TEXTBOOK

The Big Picture: Ratio and Proportion progression map

Key concepts (GCSE subject content statements)

- solve problems involving direct and inverse proportion including graphical and algebraic representations
- apply the concepts of congruence and similarity, including the relationships between lengths in similar figures
- change freely between compound units (e.g. density, pressure) in numerical and algebraic contexts
- use compound units such as density and pressure

			Ketulii to overview
Possible themes		Possible key learning points	
 Solve problems involving different types of proportion Investigate ways of representing proportion Understand and solve problems involving congruence Understand and solve problems involving similarity Know and use compound units in a range of situations 		• Know the features of expressions, o	uation ituation epresent a direct or inverse proportion situation or formulae, that represent a direct or inverse proportion situation en the multiplier, the expression and the graph oportion roportion range of situations napes of density and pressure
Prerequisites	Mathematical language		Pedagogical notes
 Find a relevant multiplier in a situation involving proportion Plot the graph of a linear function Understand the meaning of a compound unit Convert between units of length, capacity, mass and time 	Direct proportion Inverse proportion Multiplier Linear Congruent, Congruence Similar, Similarity Compound unit Density, Population density Pressure Notation Kilograms per metre cubed is written a	s kg/m³	Students have explored enlargement previously. Conditions for congruent triangles will be explored in a future unit. Use the story of Archimedes and his 'eureka moment' when introducing density. Up-to-date information about population densities of counties and cities of the UK, and countries of the world, is easily found online. NCETM: The Bar Model NCETM: Multiplicative reasoning NCETM: Departmental workshops: Proportional Reasoning NCETM: Departmental workshops: Congruence and Similarity NCETM: Glossary Common approaches All students are taught to set up a 'proportion table' and use it to find the multiplier in situations involving direct proportion
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Show me an example of two quantities that will be in direct (inverse) proportion. And another. And another Convince me that this information shows a proportional relationship. What type of proportion is it? 40 60 2 80 1.5 Which is the greatest density: 0.65g/cm³ or 650kg/m³? Convince me. 	KM: <u>Graphing proportion</u> NRICH: <u>In proportion</u> NRICH: <u>Ratios and dilutions</u> NRICH: <u>Similar rectangles</u> NRICH: <u>Fit for photocopying</u> NRICH: <u>Tennis</u> NRICH: <u>How big?</u> Learning review KM: <u>9M7 BAM Task</u>		 Many students will want to identify an additive relationship between two quantities that are in proportion and apply this to solve problems The word 'similar' means something much more precise in this context than in other contexts students encounter. This can cause confusion. Some students may think that a multiplier always has to be greater than 1

UNIT 11 – MULTIPLICATIVE REASONING

GCSE EDEXCEL HIGHER TEXTBOOK

The Big Picture: Ratio and Proportion progression map

Key concepts (GCSE subject content statements)

- interpret equations that describe direct and inverse proportion
- recognise and interpret graphs that illustrate direct and inverse proportion
- understand that X is inversely proportional to Y is equivalent to X is proportional to $1/\mathrm{Y}$

Possible themes	Possible key learning points	
Explore differences between direct and inverse proportion	Recognise and interpret graphs that illustrate direct proportion	
Investigate ways of representing proportion in situation	Recognise and interpret graphs that illustrate inverse proportion	
Solve problems involving proportion	Understand that X is inversely proportional to Y is equivalent to X is proportional to 1/Y	
	Interpret equations that describe direct proportion	
	Interpret equations that describe inverse proportion	
	Solve problems which include finding the multiplier in a situation involving direct proportion	
	Solve problems which include finding the multiplier in a situation involving inverse proportion	

	• Solve problems which include ind	ing the multiplier in a situation involving inverse proportion
Prerequisites	Mathematical language	Pedagogical notes
 Know the difference between direct and inverse proportion Recognise direct or inverse proportion in a situation Know the features of a graph that represents a direct or inverse proportion situation Know the features of an expression (or formula) that represents a direct or inverse proportion situation Understand the connection between the multiplier, the expression and the graph 	Direct proportion Inverse proportion Multiplier Notation ∝ - 'proportional to'	Pupils have solved simple problems involving direct and inverse proportion in Stage 9. This unit focuses on developing a formal algebraic approach, including the use of proportionality constants, to solve direct and inverse proportion problems. NCETM: <u>Departmental workshops: Proportional Reasoning</u> NCETM: <u>Glossary</u> Common approaches <i>All pupils are taught to find a proportionality constant when solving problems</i>
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions
 Show me an example of two quantities that will be in direct proportion. And another. And another Convince me that this information shows a proportional relationship. What type of proportion is it? <u>40 50</u> <u>60 75</u> <u>80 100</u> Always/Sometimes/Never: X is inversely proportional to Y is equivalent to X is proportional to 1/Y 	 KM: <u>Graphing proportion</u> KM: <u>Investigating proportionality 2</u> KM: <u>Stick on the Maths NNS1: Understanding Proportionality</u> KM: <u>Stick on the Maths CALC1: Proportional Change and multiplicative</u> <u>methods</u> KM: <u>Convinced: NNS1: Understanding Proportionality</u> KM: <u>Convinced: CALC1: Proportional Change and multiplicative methods</u> Hwb: <u>Inverse or direct?</u> NRICH: <u>In Proportion</u> Learning review GLOWMaths/JustMaths: <u>Sample Questions Both Tiers</u> GLOWMaths/JustMaths: <u>Sample Questions Higher Tiers</u> KM: <u>10M2 BAM Task</u> 	 Some pupils will want to identify an additive relationship between two quantities that are in proportion and apply this to solve problems Some pupils may interpret 'x is inversely proportional to y' as y=x/k rather than y = k/x Some pupils may think that the proportionality constant always has to be greater than 1

UNIT 12 – SIMILARITY & CONGRUENCE

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)
- apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, including Pythagoras' Theorem and the fact that the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs

		Return to overview	
Possible themes	Possible key learning points	Possible key learning points	
 Explore the congruence of triangles Investigate geometrical situations Form conjectures Create a mathematical proof 	 Apply angle facts to derive results Create a geometrical proof Know the conditions for triangles t Use the conditions for congruent t Use congruence in geometrical proof Solve geometrical problems involvi Know the meaning of a Pythagorea 	o be congruent riangles iofs ing similarity	
Prerequisites	Mathematical language	Pedagogical notes	
 Know angle facts including angles at a point, on a line and in a triangle Know angle facts involving parallel lines and vertically opposite angles Know the properties of special quadrilaterals Know Pythagoras' theorem 	Congruent, congruence Similar (shapes), similarity Hypotenuse Conjecture Derive Prove, proof Counterexample Notation Notation for equal lengths and parallel lines SSS, SAS, ASA, RHS The 'implies that' symbol (⇒)	 'Known facts' should include angle facts, triangle congruence, similarity and properties of quadrilaterals NCETM: <u>Glossary</u> Common approaches All students are asked to draw 1, 2, 3 and 4 points on the circumference of a set of circles. In each case, they join each point to every other point and count the number of regions the circle has been divided into. Using the results 1, 2, 4 and 8 they form a conjecture that the sequence is the powers of 2. They test this conjecture for the case of 5 points and find the circle is divided into 16 regions as expected. Is this enough to be convinced? It turns out that it should not be, as 6 points yields either 30 or 31 regions depending on how the points are arranged. This example is used to emphasise the importance and power of mathematical proof. See KM: <u>Geometrical proof</u> 	
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions	
 Show me a pair of congruent triangles. And another. And another Show me a pair of similar triangles. And another. And another What is the same and what is different: Proof, Conjecture, Justification, Test? Convince me the base angles of an isosceles triangle are equal. Show me a Pythagorean Triple. And another. And another. Convince me a triangle with sides 3, 4, 5 is right-angled but a triangle with sides 4, 5, 6 is not right-angled. 	KM: Geometrical proof KM: Don't be an ASS KM: Congruent triangles KM: Unjumbling and examining angles KM: Shape work: Triangles to thirds, 4×4 square, Squares, Congruent triangles KM: Triple triplicate and Pythagorean triples KM: Daniel Gumb's cave NRICH: Tilted squares NRICH: What's possible? Bring on the Maths Level 8: Congruence and similarity Year 9, Logic: Triangles, More triangles Learning review KM: 9M12 BAM Task, 9M9 BAM Task KM: Quiz and Review	 Some students think AAA is a valid criterion for congruent triangles. Some students try and prove a geometrical situation using facts that 'look OK', for example, 'angle ABC looks like a right angle'. Some students do not appreciate that diagrams are often drawn to scale. Some students think that all triangles with sides that are consecutive numbers are right angled. 	

The Big Picture: Properties of Shape progression map

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- calculate surface area and volume of spheres, pyramids, cones and composite solids
- apply the concepts of congruence and similarity, including the relationships between length, areas and volumes in similar figures

The Big Picture: Measurement and mensuration progression map

Possible themes	Possible key le	earning points
 Calculate surface areas of solids Calculate volumes of solids Solve problems involving enlargement and 3D shapes 	 Find the surf Find the volu Identify how Solve practic Solve practic Understand Understand Move freely 	oras' theorem to find lengths in a pyramid or cone face area of spheres, cones and pyramids ume of spheres, cones and pyramids v to find the volume or surface area of a composite solid cal problems involving the surface area of solids cal problems involving the volume of solids the implications of enlargement on area the implications of enlargement on volume v between scale factors for length, area and volume cal problems involving length, area and volume in similar figures
 Prerequisites Calculate exactly with multiples of π Know and use the formula for area and circumference of a circle Know how to use formulae to find the area of rectangles, parallelograms, triangles, trapezia, circles, sectors and Know how to find the area of compound shapes Know how to find the surface area of a right prism and a cylinder Calculate the surface area of a right prism and a cylinder Carry out an enlargement Find the scale factor of a given enlargement Use Pythagoras' theorem to find missing lengths in right-angled triangles 	Mathematical language (Composite) solid Sphere, Pyramid, Cone Perpendicular (height), (slant height) Surface area Volume Congruent, congruence Similarity, similar shapes, similar figures Enlarge, enlargement Scale factor Notation π Abbreviations of units in the metric system: km, m, cm, km², mm³, cm³, km³	Pedagogical notesPupils have previously learnt how to find the surface area of right prisms and cylinders in Stage 9. This unit focuses on finding the volume and surface areas of cones, spheres and pyramids. Pupils also explore congruence and similarity - the use of proportion tables can be helpful to find the multiplier when solving similarity problems such as: $\boxed{ Missing lengths 6 9 }$ Missing lengths 10 15 $\rightarrow \times 1.5 \rightarrow$ NCETM: Glossarymm, mm², cm², m²,Common approaches Pupils explore the surface area of spheres using oranges (https://www.youtube.com/watch?v=cAxHYFRx1Fs) Pupils explore volumes of pyramids by making nets of pyramids and prisms with the same polygonal base and using sand or sugar to compare volumes.
 Reasoning opportunities and probing questions Always/ Sometimes/ Never: The value of the volume of a pyramid is less than the value of the surface area of a pyramid. Always/ Sometimes/ Never: The value of the volume of a sphere is less than the value of the surface area of a sphere. Convince me that the volume of a pyramid = ¹/₃ × A × h Convince me that 1 m³ = 1 000 000 cm³ 	Suggested activities KM: Stick on the Maths 8: Congruence and Similarity KM: Convinced? Congruence and Similarity NRICH: Surface Area and Volume and Nicely Similar Hwb: Summerhouse and Radiators OCR: Congruence Check In and Similarity Check In Learning review GLOWMaths/JustMaths: Sample Questions Both Tiers GLOWMaths/JustMaths: Sample Questions Higher Tiers KM: 10M11 BAM Task	 Possible misconceptions Some pupils will work out 4/3 × (π × r)³ when finding the volume of a sphere. Some pupils may confuse the concepts of surface area and volume Some pupils will work out 4 × (π × r)² when finding the surface area of a sphere. Some pupils may think the volume of a pyramid = ½ × A × h

UNIT 13 – ADVANCED TRIG

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- know the formulae for Pythagoras' theorem, $a^2 + b^2 = c^2$, and apply it to find lengths in three dimensional figures
- know the trigonometric ratios, sinθ = opposite/hypotenuse, cosθ = adjacent/hypotenuse, tanθ = opposite/adjacent and apply them to find angles and lengths in three dimensional figures
- know and apply the sine rule, a/sinA = b/sinB = c/sinC, and the cosine rule, $a^2 = b^2 + c^2 2bc \cos A$, to find unknown lengths and angles
- know and apply area = ½ab sinC to calculate the area, sides or angles of any triangle

Return to overview

The Big Picture: Properties of Shape progression map

Possible themes		Possible key learning points	
 Explore three-dimensional shapes Apply Pythagoras' theorem in three dimensions Apply trigonometry in three dimensions Know and use the sine rule Know and use the cosine rule Bring on the Maths: GCSE Higher Shape Investigating triangles: #6 Investigating angles: #10, #13		 Use Pythagoras' theorem to find the length of a given diagonal in a cuboid Use Pythagoras' theorem to find any length in a cuboid Use Pythagoras' theorem to find missing lengths in other three dimensional figures Use Pythagoras' theorem to solve problems involving three dimensional figures Use trigonometry to find the angle between a line and a plane Solve simple problems involving missing lengths and angles in three dimensional figures Solve more complex problems involving missing lengths and angles in three dimensional figures Know and use the sine rule in simple cases Use the sine rule to find a missing angle(s) in a non-right angled triangle Know and use the cosine rule in simple cases Use the cosine rule to find a missing side in a non-right angled triangle Use the cosine rule to find a missing angle in a non-right angled triangle Solve complex problems involving bearings Know and use area = ½ab sinC to calculate the area of any triangle Know and use area = ½ab sinC to calculate sides or angles of any triangle 	
Prerequisites	Mathematical language		Pedagogical notes
 Apply Pythagoras' theorem in two dimensions Know the trigonometric ratios, sinθ = opp/hyp, cosθ = adj/hyp, tanθ = opp/adj Choose an appropriate trigonometric ratio that can be used in a given two-dimensional situation Set up and solve a trigonometric equation to find a missing side or angle in a right-angled triangle 	Diagonal (Face Diagonal, Space Diagonal Plane Opposite, Adjacent, Hypotenuse Trigonometry Sine, Cosine, Tangent Angle of elevation, angle of depression Notation $\sin\theta$ stands for the 'sine of θ ' \sin^{-1} is the inverse sine function, and not		Ensure that all students are aware of the importance of their scientific calculator being in degrees mode. Ensure that students do not round until the end of a multi-step calculation This unit of trigonometry should focus on right-angled triangles in three dimensions and non-right-angled triangles. NRICH: <u>History of Trigonometry</u> NCETM: <u>Glossary</u> Common approaches <i>All students explore how to derive the sine rule</i>
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Show me a diagonal/right angle in this cuboid. And another, and another Convince me that you have chosen the correct trigonometric fact What's the same and what is different: a² = b² + c² - 2bc cosA and a² = b² + c². Can you find a connection? What's the same and what is different: area = ½ab sinC and area = ½bh. Can you find a connection? 	KM: Investigate Euler bricks Hwb: Q8 Triangle Side Length Hwb: T3 Greenhouse Hwb: T20 Wardrobe NRICH: Raising the Roof NRICH: Coke Machine NRICH: Cosines Rule Learning review KM: 11M7 BAM Task GLOWMaths/JustMaths: Sample Questions Higher Tiers		 Some students may label opposite and adjacent in a non-right-angled triangle Some students may not balance an equation such as 5 = 4/sinθ correctly, believing that the next step is sinθ = 5/4 Some students may think that cos⁻¹θ = 1 ÷ cosθ

UNIT 14 – STATISITICS & SAMPLING

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling
- construct and interpret diagrams for grouped discrete data and continuous data, i.e. cumulative frequency graphs, and know their appropriate use
- interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate graphical representation involving discrete, continuous and grouped data, including box plots
- interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate measures of central tendency including quartiles and inter-quartile range

Return to overview

The Big Picture: Statistics progression map

Possible themes	F	Possible key learning points	
 Construct and interpret cumulative frequency graphs Construct and interpret box plots Analyse distributions of data sets 		 Calculate and interpret the interque Construct and interpret a box plot Use box plots to compare distribut Understand the meaning of cumula Complete a cumulative frequency of Use a cumulative frequency curve 	pling artile and upper quartile sets artile range for discrete data ions ative frequency table
Prerequisites	Mathematical language	· ·	Pedagogical notes
 Know the meaning of discrete and continuous data Interpret and construct frequency tables Analyse data using measures of central tendency 	Categorical data, Discrete data Continuous data, Grouped data Axis, axes Population Sample Cumulative frequency Box plot, box-and-whisker diagram Central tendency Mean, median, mode Spread, dispersion, consistency Range, Interquartile range Skewness Notation Correct use of inequality symbols when I	labeling groups in a frequency table	In Stage 8, pupils explore how to find the modal class of set of grouped data, the class containing the median of a set of data, the midpoint of a class, an estimate of the mean from a grouped frequency table and an estimate of the range from a grouped frequency table This unit builds on the knowledge by exploring measures of central tendency using quartiles and inter-quartile range. Cumulative frequency curves are usually S-shaped, known as an ogive. Box plots are also known as 'box and whisker' plots. NCETM: Glossary Common approaches The median is calculated by finding the (n+1)/2 th item and the lower quartile by finding the (n+1)/4 th item unless n is large (n>30). In the case when n>30, n/2 and n/4 can be used to find the median and lower quartile.
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions

 Show me a box plot with a large/small interquartile range. And another. And another. What's the same and what's different: inter-quartile range, median, mean, mode Convince me how to construct a cumulative frequency curve Always/Sometimes/Never: The median is greater than the inter-quartile range 	KM: Stick on the Maths HD1: Statistics, HD2: Comparing Distributions KM: Cumulative Frequency and Box Plots NRICH: The Live of Presidents NRICH: Olympic Triathlon NRICH: Box Plot Match OCR: Sampling, Analysing Data Learning review Distribution in the Complex state of the Data Time	 Some pupils may plot the cumulative frequencies against the midpoints or lower bounds of grouped data Some pupils may try to construct a cumulative frequency curve by plotting the frequencies against the upper bound of grouped data Some pupils may try to construct a cumulative frequency curve by joining the points with straight lines rather than a smooth curve Some pupils may forget to add the 'whiskers' when constructing a 'box and whisker' plot.
	6	
	GLOWMaths/JustMaths: Sample Questions Both Tiers	
	GLOWMaths/JustMaths: Sample Questions Higher Tiers	
	KM: <u>10M13 BAM Task</u>	

UNIT 14 – STATISITICS & SAMPLING

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

• construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with equal and unequal class intervals and know their appropriate use

The Big Picture: Statistics progression map

			Return to overview
Possible themes		Possible key learning points	
 Construct and interpret histograms Analyse distributions of data sets Solve problems involving histograms Bring on the Maths: GCSE Higher Data Representing Data: #7 Interpreting and Discussing: #9		 Understand the definition of a histo Construct histograms for grouped of Use a histogram to find missing validities a partially completed histogram Solve problems involving histogram 	ata with unequal class intervals ues in a frequency table n and frequency table to complete both
Prerequisites	Mathematical language		Pedagogical notes
 Know the meaning of continuous data Understand and use grouped frequency tables Interpret histograms for grouped data with equal class intervals 	Continuous data, Grouped data Table, Frequency table Frequency Frequency density Histogram Scale, Graph Axis, axes Notation Correct use of inequality symbols wher	n labeling groups in a frequency table	The word histogram is often misused and an internet search of the word will usually reveal a majority of non-histograms. The correct definition is 'a diagram made of rectangles whose areas are proportional to the frequency of the group'. If the class widths are equal, then the vertical axis shows the frequency. It is only later that pupils need to be introduced to unequal class widths and frequency density. NCETM: <u>Glossary</u> Common approaches
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Convince Kenny how to construct a histogram with unequal intervals What's the same and what is different: histogram, bar chart? Always/Sometimes/Never: The value of the frequency density is less than 1 Kenny thinks that histogram is just a 'fancy' name for a bar chart. Do you agree with Kenny? Explain your answer. 	KM: What the heck is a histogram? KM: <u>Stick on the Maths HD3: Working v</u> AQA Maths: <u>Collecting and representin</u> Learning review GLOWMaths/JustMaths: <u>Sample Quest</u>	g data	 Some pupils may think that histogram is a 'posh term' for a bar chart Some pupils may calculate the frequency density incorrectly such as dividing the bar width by the frequency. Some pupils may label the bar of a histogram rather than the boundaries of the bars Some pupils may leave gaps between the bars in a histogram Some pupils may misuse the inequality symbols when working with a grouped frequency table

UNIT 15 – QUADRATICS

GCSE EDEXCEL HIGHER TEXTBOOK

The Big Picture: Algebra progression map

Key concepts (GCSE subject content statements)

- simplify and manipulate algebraic expressions involving algebraic fractions
- manipulate algebraic expressions by expanding products of more than two binomials
- simplify and manipulate algebraic expressions (including those involving surds) by expanding products of two binomials and factorising quadratic expressions of the form x² + bx + c, including the difference of two squares
- manipulate algebraic expressions by factorising quadratic expressions of the form $ax^2 + bx + c$

Possible themes	Possible key learning points	
 Manipulate algebraic fractions Manipulate algebraic expressions 	 Add and subtract algebraic fra Multiply and divide algebraic Simplify an algebraic fraction Expand the product of three H Expand the product of two bi Factorise an expression involv Factorise a quadratic expression Factorise a quadratic expression Identify when factorisation of Simplify an algebraic fraction Change the subject of a formula 	fractions binomials nomials involving surds ving the difference of two squares ion of the form $ax^2 + bx + c$ (<i>a</i> is prime) ion of the form $ax^2 + bx + c$ (<i>a</i> is composite) if the numerator and/or denominator is needed to simplify an algebraic fraction
Prerequisites	Mathematical language	Pedagogical notes
 Calculate with negative numbers Multiply two linear expressions of the form (x ± a)(x ± b) Factorise a quadratic expression of the form x² + bx + c Add, subtract, multiply and divide proper fractions Change the subject of a formula when two steps are required 	Equivalent Equation Expression Expand Linear Quadratic Algebraic Fraction Difference of two squares Binomial Factorise Notation	Pupils have applied the four operations to proper, and improper, fractions in Stage 7 and factorised quadratics of the form $x^2 + bx + c$ in Stage 9. Pupils should build on the experiences of using the grid method in Stage 9 to expand products of more than two binomials. Eg $(x + 2)(x + 3)(x - 4) = (x^2 + 5x + 6)(x - 4) = x^3 + x^2 - 14x - 24$ $\boxed{ x 2 45x 46} $ $\boxed{x^2 + 5x^2 + 6x} $ Teachers also need to help pupils 'see' the <u>difference</u> of <u>two squares</u> by using pictorial representations NCETM: <u>Algebra</u> NCETM: <u>Glossary</u> Common approaches Students are taught to use the grid method in reverse to factorise a quadratic Students manipulate algebra tiles to explore factoring quadratics The difference of two squares is explained using visual representation
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions
 The answer is 2x² + 10x + c. Show me a possible question. And another. Kenny simplifies ^{3x²+x}/_x as 3x² + 1. Do you agree with Kenny? Explain. Convince me that 103² - 97² = 1200 without a calculator. Convince me that 4x² - 9 = (3x - 2)(3x + 2). Jenny thinks that (3x - 2)² = 3x² + 12x + 4. Do you agree with Jenny? Explain your answer. Convince me that ^{2x²+5x+2}/_{2x+1} = x + 2 	KM: Simplifying algebraic fractions KM: Maths to Infinity: Brackets and Quadratics KM: Stick on the Maths: Quadratic sequences NRICH: What's possible? NRICH: Finding Factors Algebra Tiles (external site) Learning review GLOWMaths/JustMaths: Sample Questions Higher Tiers KM: 10M5 BAM Task	 Once pupils know how to factorise a quadratic expression of the form x² + bx + c they might overcomplicate the simpler case of factorising an expression such as 3x² + 6x (≡ (3x + 0)(x + 2)) Some pupils may think that (x + a)² ≡ x² + a² Some pupils may apply the 'rules of factorising' quadratics of the form x² + bx + c to quadratics of the form ax² + bx + c; e.g. 2x² + 7x + 10 ≡ (2x + 5)(x + 2) because 2 × 5 = 10 and 2 + 5 = 7.

UNIT 15 – QUADRATICS

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- solve quadratic equations algebraically by factorising
- solve quadratic equations (including those that require rearrangement) algebraically by factorising
- find approximate solutions to quadratic equations using a graph
- deduce roots of quadratic functions algebraically

Return to overview

Possible themes	Possible key lec	irning points
 Solve quadratic equations Use graphs to solve equations 	 Solve a quadra Solve a quadra Solve a quadra Make connecti Make connecti Find approxima Deduce roots of 	tic equation of the form $x^2 + bx + c = 0$ by factorising tic equation by rearranging and factorising ions between graphs and quadratic equations of the form $ax^2 + bx + c = 0$ ions between graphs and quadratic equations of the form $ax^2 + bx + c = dx + e$ ate solutions to quadratic equations using a graph of quadratic functions algebraically s that involve solving a quadratic equation in context
Prerequisites	Mathematical language	Pedagogical notes
 Manipulate linear equations Factorise a quadratic expression of the form x² + bx + c Factorise a quadratic expression of the form ax² + bx + c Make connections between a linear equation and a graph 	(Quadratic) equation Factorise Rearrange Variable Unknown Manipulate Solve Deduce x-intercept Root	Pupils factorise quadratic expressions of the form $ax^2 + bx + c$ in Stage 9 (a = 1) and Stage 10. If A × B = 0 then either A = 0 or B = 0 is a fundamental underlying concept to solving quadratic equations when b ≠ 0 and c ≠ 0 by factorising. Pupils should experience solving quadratics with b ≠ 0 and c = 0, such as x^2 + 6x = 0, and quadratics with b ≠ 0 and c ≠ 0, such as x^2 + 6x = 0, and quadratics with b ≠ 0 and c ≠ 0, such as x^2 + 6x = 0 without appreciating that x could equal zero. NCETM: Glossary Common approaches Pupils are taught how to solve quadratics of the form $ax^2 + bx + c = 0$ when: - b = 0, b ≠ 0 and c = 0, b ≠ 0 and c ≠ 0 Pupils are encouraged, whenever possible, to divide a quadratic equation by a common factor to make the factorising process easier, such as $2x^2 + 6x + 8 = 0$
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions
 Show me a quadratic equation that can be solved by factorising. And another, and another Show me a quadratic equation with one solution x = 3. And another, and another Always/Sometimes/Never: A quadratic equation can be solved by factorising. Convince me why you can't '<i>divide both sides by x</i>' when solving x² + 8x = 0 Kenny is solving x² + 6x + 8 = 2 as follows: (x + 4)(x + 2) = 2 so x + 4 = 2 or x + 2 = 1. Therefore, x = -2 and x = -1. Do you agree with Kenny? Explain your answer. 	NRICH: <u>How old am 1?</u> NRICH: <u>Golden thoughts</u> Hwb: <u>Algebra Fails</u> Learning review GLOWMaths/JustMaths: <u>Sample Questions Both Tiers</u> GLOWMaths/JustMaths: <u>Sample Questions Higher Tiers</u> KM: <u>10M6 BAM Task</u> , <u>10M7 BAM Task</u>	 Some pupils may not appreciate that a quadratic equation must equal zero when solving by factorising Some pupils may solve x² + 8x = 0 by dividing both sides by x to get x + 8 = 0, x = -8. Some pupils may forget to divide by the coefficient of x when solving quadratics such as 2x² + 5x + 2 = 0, i.e. (2x + 1)(x + 2) = 0 so 2x + 1 = 0 or x + 2 = 0 and therefore x = -1 (rather than -½ or x = -2) Some pupils may not divide a quadratic equation by a common factor to make the factorising process easier, such as 2x² + 6x + 8 = 0

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- use the form y = mx + c to identify perpendicular lines
- recognise and use the equation of a circle with centre at the origin
- find the equation of a tangent to a circle at a given point

Possible themes	Possible key learning points		
 Investigate features of straight line graphs Know and use the equation of a circle with centre at the origin Solve problems involving the equation of a circle 	 Identify perpendicular lines using Identify the equation of a circle from Use the equation of a circle to dra Find the equation of a tangent to dra 	 Know that perpendicular lines have gradients with a product of -1 Identify perpendicular lines using algebraic methods Identify the equation of a circle from its graph Use the equation of a circle to draw its graph Find the equation of a tangent to circle at a given point Solve algebraic problems involving tangents to a circle 	
Prerequisites	Mathematical language	Pedagogical notes	
 Use the form y = mx + c to identify parallel lines Rearrange an equation into the form y = mx + c Find the equation of a line through one point with a given gradient Find the equation of a line through two given points Know and apply Pythagoras' Theorem 	Function, equation Linear, non-linear Parallel Perpendicular Gradient y-intercept, x-intercept, root Sketch, plot Centre (of a circle) Radius Tangent Notation y = mx + c	This unit builds on the graphs of linear functions from Stage 9 including parallel lines. Exploring the equation of circle is new for the pupils and it is important to check students know the definition of a circle (i.e. the locus of points from a fixed point) to help understand how to derive the general formula $(x - a)^2 + (y - b)^2 = r^2$ by applying Pythagoras' theorem to find the distance of (x,y) , a general point on the circumference of the circle, from (a,b) , the centre of a circle with radius r. NCETM: Glossary Common approaches All student use dynamic graphing software to explore perpendicular graphs – <i>i.e. plot two perpendicular lines and analyse the relationship between the</i> gradients of the two lines. Pupils plot points with a 'x' and not '•' Pupils draw graphs in pencil	
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions	
 Show me the equation of two lines that are perpendicular to each other. And another. And another. Convince me the lines y + 0.5x = 7, 6 - x = 2y and 8 + 2y + 4x = 0 are perpendicular to y = 3 + 2x. Show me the equation of a circle - what is the centre and radius of the circle? And another. And another. True or False? A straight line can intersect a circle at 0, 1 or 2 points. Convince me how to find the equation of a tangent to a circle at a given point 	 KM: The gradient of perpendicular lines KM: Introducing the equation of a circle KM: The general equation of a circle KM: The general equation of a circle KM: The general equation of a circle NRICH: Perpendicular lines NRICH: At Right Angles FMSP: Geogebra – Equation of a tangent to a circle Learning review GLOWMaths/JustMaths: Sample Questions Both Tiers GLOWMaths/JustMaths: Sample Questions Higher Tiers KM: 10M9 BAM Task 	 Some pupils do not rearrange the equation of a straight line correctly to find the gradient of a straight line. For example, they think that the line y - 2x = 6 has a gradient of -2. Some pupils may think that gradient = (change in x) / (change in y) when trying to equation of a line through two given points. Some pupils may think that the equation of a circle is (x-a)²+(y-b)² = r 	

The Big Picture: Algebra progression map

GCSE HIGHER SOW

UNIT 16 – CIRCLE THEOREMS

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

• apply and prove the standard circle theorems concerning angles, radii, tangents and chords, and use them to prove related results

The Big Picture: Properties of Shape progression map

			Return to overview
Possible themes	Pos	sible key learning points	
 Investigate geometric patterns using circles Explore circle theorems Make and prove conjectures Bring on the Maths: GCSE Higher Shape Investigating angles in circles: #1, #2, #3, #4		 Create a chain of logical steps to create a proof in a geometrical situation Know that 'the angle in a semicircle is a right angle' Know that 'the angle at the centre is double the angle at the circumference' Know that 'angles in the same segment are equal' Know that 'opposite angles in a cyclic quadrilateral sum to 180°' Know that 'two tangents from an external point are equal in length' Know that 'a radius is perpendicular to a tangent at that point' Know that 'a radius that bisects a chord is perpendicular to that chord' Know the alternate segment theorem Use a combination of known and derived facts to solve a geometrical problem Identify when a circle theorem can be used to help solve a geometrical problem Justify solutions to geometrical problems 	
Prerequisites	Mathematical language	, , ,	Pedagogical notes
 Know the vocabulary of circles Know angle facts including angles at a point, on a line and in a triangle Know angle facts involving parallel lines and vertically opposite angles Know the properties of special quadrilaterals 	Radius, radii Tangent Chord Theorem Conjecture Derive Prove, proof Counterexample Notation Notation for equal lengths and parallel lines The 'implies that' symbol (⇒)		 Students should also explore the following (paraphrased) circle theorems: Cyclic Quadrilateral: <u>GSP</u>, <u>Word</u> Radius and Tangent: <u>GSP</u>, <u>Word</u> Radius and chord: Angles in the Same Segment: <u>GSP</u>, <u>Word</u> The Angle in the Centre: <u>GSP</u>, <u>Word</u> Two Tangents: <u>GSP</u>, <u>Word</u> Alternate Segment Theorem: <u>GSP</u>, <u>Word</u> NCETM: <u>Glossary</u> Common approaches All students are first introduced to the idea of circle theorems by investigating <u>Thales Theorem</u>. This is then extended to demonstrate that 'the angle at the centre is twice the angle at the circumference' All students are given the opportunity to create and explore dynamic diagrams of different circle theorems.
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 How can you use a set square to find the centre of a circle? Show me a radius of this circle. And another, and another (What does this tell you about the lengths? About the triangle?) Provide the steps for a geometrical proof of a circle theorem and ask students to 'unjumble' them and create the proof, explaining their thinking at each step Use the 'Always / Sometimes / Never' approach to introduce a circle theorem 	KM: Right angle challenge KM: Thales Theorem KM: 6 point circles, 8 point circles, 12 point of KM: Dynamic diagrams NRICH: Circle theorems Hwb: Cadair Idris Hwb: Cyclic quadrilaterals Learning review GLOWMaths/JustMaths: Sample Questions I GLOWMaths/JustMaths: Sample Questions I	Both Tiers	 Some students may think that a cyclic quadrilateral is formed using three points on the circumference along with the centre of the circle Some students may not appreciate the significance of standard geometrical notation for equal lengths and angles, and think that lengths / angles are equal 'because they look equal' Some students may not realise that they can extend the lines on diagram to help establish necessary facts

UNIT 17 – FURTHER ALGEBRA

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- find approximate solutions to equations numerically using iteration
- solve two linear simultaneous equations in two variables algebraically

Return to overview

The Big Picture: Algebra progression map

P

The Purcell School

for young musicians

Possible themes		Possible key learning points	
 Find approximate solutions to complex equations Solve simultaneous equations Solve problems involving simultaneous equations 		 Use an iterative formula to find app Use an iterative formula to find app Solve two linear simultaneous equa Solve two linear simultaneous equarequired) 	equation lies between two given values proximate solutions to equations proximate solutions, to a given number of decimal places, to an equation ations in two variables by substitution ations in two variables by elimination (multiplication of both equations ations in two variables by elimination (fractional coefficients) equations in complex cases
Prerequisites	Mathematical language	Pedagogical notes	
 Understand the concept of solving simultaneous equations by elimination Solve two linear simultaneous equations in two variables in very simple cases (no multiplication required) Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required) 	Unknown Solve Solution set Interval Decimal search Iteration Simultaneous equations Substitution Elimination Notation (a, b) for an open interval [a, b] for a closed interval	'Interval bisection' is often an intuitive approach used by pupils when faced with a certain type of problem (below). 'Decimal search' includes 'trial and improvement' when the equation is not set to 0. et Having been introduced to iterative processes, iteration is explained as a process for finding approximate sc non-linear equations. GCSE examples can be found here. earch Pupils have been introduced to solving simultaneous equations using elimination in simple cases in Stage 9. ous equations simultaneous equations using substitution is new to this Stage. NCETM: Departmental workshops: Simultaneous equations NCETM: Glossary Common approaches Pupils are taught to label the equations (1) and (2), and label the subsequent equations (3), (4), etc.	
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Show me a pair of simultaneous equations with a solution x = 4, y = -2. And another. And another Convince me x + 2y = 11, 3x + 4y = 18 can be solved using substitution and using elimination. Which method is best in this case? Always/ Sometimes/ Never: Solving a pair of simultaneous equations using elimination is more efficient than using substitution 	 KM: Introduce iterative processes (in this example, interval bisection) by challenging students to find your chosen number (between 1 and 1000000) when the only clue is 'bigger' or smaller' after each guess. Compare the final number of guesses with 20 (since 2²⁰ is close to 1000000 and students will probably have very quickly developed a process of roughly bisecting intervals). KM: Babylonian square roots – an introduction to iterative processes KM: Pre-iteration KM: Iteration KM: Stick on the Maths: ALG2 Simultaneous linear equations KM: Convinced?: ALG2 Simultaneous linear equations NRICH: Matchless AQA: Bridging Units Resource Pocket 4 (Skills builder 2 and 3) Learning review GLOWMaths/JustMaths: Sample Questions Both Tiers GLOWMaths/JustMaths: Sample Questions Higher Tiers KM: 10M4 BAM Task 		 Some pupils may not check the solution to a pair of simultaneous equations satisfy both equations Some pupils may not multiply all coefficients, or the constant, when multiplying an equation Some pupils may struggle to deal with negative numbers correctly when adding or subtracting the equations

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- solve quadratic inequalities in one variable
- solve two simultaneous equations in two variables where one is quadratic algebraically

		Return to overview
Possible themes	Possible key learning points	
 Solve inequalities Solve simultaneous equations Bring on the Maths: GCSE Higher Algebra Solving Simultaneous Equations: #4 	 Solve simultaneous equations in two substitution Make connections between simult 	vo variables where one is a simple quadratic equation using substitution vo variables where one is a more complex quadratic equation using
Prerequisites	Mathematical language	Pedagogical notes
 Use set notation to list a set of integers Use a formal method to solve a linear inequality Show a range of values that solve an inequality on a number line Sketch a graph of a quadratic functions Find the roots of a quadratic function Solve two linear simultaneous equations in two variables by substitution Solve two linear simultaneous equations in two variables by elimination (multiplication of both equations required) 	Unknown (Quadratic) inequality Variable Manipulate Solve Solution set Simultaneous equations Substitution Elimination Notation The inequality symbols: < (less than), > (greater than), ≤ (less than or equal to), ≥ (more than or equal to)	In Stage 9, pupils have learnt about solving linear inequalities in one variable and representing the solution on a number line. In Stage 10, they learnt about solving inequalities in two variables and representing the solution set using set notation and on a graph. NCETM: <u>Glossary</u> Common approaches All pupils should sketch the quadratic function to identify the solution set for a quadratic inequality All pupils should experience plotting graphs of these situations using graph- plotting software
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions
 Show me a quadratic inequality. And another, and another, Kenny thinks the solution to x² > 9 is x > 3. Jenny thinks the solution to x² > 9 is x < -3. Who do you agree with? Explain your answer. Always/Sometimes/Never: A pair of simultaneous equations in two variables where one is quadratic algebraically will have two solutions 	AQA Maths: <u>Inequalities</u> Resourceaholic: <u>Inequalities</u> Learning review KM: <u>11M6 BAM Task</u> GLOWMaths/JustMaths: <u>Sample Questions Higher Tiers</u>	 Some pupils may think the solution to x² > 16 is x > 4. Some pupils may express the solution to a quadratic inequality using incorrect notation, e.g2 > x < 2, -2 > x > 2 Some pupils may think a pair of simultaneous equations in two variables where one is quadratic will only one solution

UNIT 17 – SOLVING QUADRATIC EQUATIONS

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- solve quadratic equations by completing the square and by using the quadratic formula
- deduce turning points of quadratic functions by completing the square
- deduce roots of quadratic functions algebraically
- work with general iterative processes

Return to overview

Possible themes		Possible key learning points	
 Solve quadratic equations Solve practical problems involving quadratic equations Understand and use iterative processes Bring on the Maths: GCSE Higher Algebra Solving quadratic equations: #6, #8, #9, #10, #11, #12		 Deduce the roots of a quadratic fur Know and apply the formula for sol Know and apply the formula for sol Solve equations involving fractions Solve problems in probability that g Solve problems involving quadratic 	c expression (a > 1) y completing the square y completing the square ratic function by completing the square fortion using the completed square form ving a simple quadratic equation of the form $ax^2 + bx + c = 0$ ving more complex quadratic equation of the form $ax^2 + bx + c = 0$ that can be rearranged into the form $ax^2 + bx + c = 0$ generate a quadratic equation
Prerequisites	Mathematical language		Pedagogical notes
 Solve a quadratic equation by rearranging and factorising Identify when a quadratic equation cannot be solved by factorising Calculate fluently with negative numbers Rearrange algebraic expressions and equations Understand and use interval bisection Rearrange an equation to form an iterative formula 	(Quadratic) equation Factorise Rearrange Complete the square Unknown Manipulate Maximum, minimum Parabola Recurrence relation Interval bisection Notation The form $(x + p)^2 - q$ usually implies that Recurrence relations are equations such		Problems involving quadratic equations include, for example, shapes with dimensions expressed algebraically and area given. Students have previously explored a range of iterative processes. They should now choose an appropriate method given the situation they are faced with. Common approaches All pupils investigate geometric representations of completing the square All pupils derive the formula for solving a quadratic equation by completing the square
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Always / sometimes / never: a quadratic equation has two solutions (justify using values of <i>a</i>, <i>b</i> and <i>c</i>) Show me an example of a quadratic equation with one solution. And another, and another, Explore geometric representations of completing the square. Make connections between the geometry and the algebra to make sense of the name of the process 	NRICH: <u>Proof sorter – quadratic equation</u> NRICH: <u>Geometric parabola</u> Learning review KM: <u>11M2 BAM Task</u> , <u>11M3 BAM Task</u> GLOWMaths/JustMaths: <u>Sample Questic</u>	-	 Some students may attempt to always substitute positive values for a, b and c when using ax² + bx + c = 0 Some students may forget that squaring a negative number results in a positive solution Some students may think that (x + p)² - q implies that p must be positive

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

- interpret the succession of two functions as a 'composite function'
- interpret the reverse process as the 'inverse function'

		Retuin to overview
Possible themes	Possible key learning points	
Solve problems involving functions	 Understand the meaning of a fu Know and use the notation for Solve problems involving comp Find the inverse of a given func Solve problems involving inverse 	composite functions osite functions tion
Prerequisites	Mathematical language	Pedagogical notes
 Given a function, establish outputs from given inputs Given a function, establish inputs from given outputs Use a mapping diagram (function machine) to represent a function Use an expression to represent a function 	Mapping Function Inverse function Composite function Notation f(x) for a function of $xf^1(x) for the inverse of a function, f(x)fg(x)$ for a function (f) of a function (g) of x	In Stage 7, pupils have learnt about interpreting simple expressions as functions with inputs and outputs including the use of mapping diagrams. They will not have met formal function notation such as $f(x)$, $f^{-1}(x)$ and $fg(x)$ until this unit. Some pupils may think that $fg(x)$ means 'do $f(x)$ first then $g(x)$ ' rather than the function $f(x)$ operating on the output of the function $g(x)$. The graph of the inverse function is the reflection of the graph of the function reflected in the line $y = x$. Note that OCR do not require students to have knowledge of function notation. NCETM: <u>Glossary</u> NCETM: <u>Secondary Magazine October 2016 'It Stands to Reason'</u> Common approaches f(g(x) is interpreted as the function $f(x)$ operating on the output of the function $g(x)$
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions
 Show me function and the corresponding inverse function. And another, and another, Convince Kenny g(x) = x-3/2 is the inverse function of f(x) = 2x + 3 Always/Sometimes/Never: fg(x) = gf(x) Find a function whose inverse is the same function 	KM: <u>Functions introduction</u> Learning review GLOWMaths/JustMaths: <u>Sample Questions Higher Tiers</u>	 Some pupils may think f¹(x)= 1/f(x) Some pupils may think that fg(x) means 'do f(x) first then g(x)' Some pupils may think that ff(x) means (f(x))²

UNIT 18 – VECTORS

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

The Big Picture: Position and direction progression map

• apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors

Possible themes	Possible key learning points	Possible key learning points	
Explore the concept of a vectorSolve problems involving vectors	Add and subtract vectorsMultiply a vector by a scalar		
Prerequisites	Mathematical language	Pedagogical notes	
Understand column vector notation	Vector Scalar Constant Magnitude Notation a (print) and <u>a</u> (written) notation for vectors \overrightarrow{AB} notation for vectors Column vector notation $\binom{p}{q}$, p = movement right and q = movement up	 In Stage 7, pupils described a translation as a 2D vector. This unit is designed to explore vectors in more detail. Vector is a latin word for 'carrier, transporter' derived from veho ('I carry, I transport, I bear'). Vectors have magnitude and direction. Scalar is from the latin 'scala' meaning 'a flight of steps, stairs, staircase'. Scalars have magnitude but no direction. NCETM: Glossary Common approaches Pupils either use underline notation, such as <u>a</u>, or AB notation when writing vectors. 	
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions	
 Show me a pair of values for a and b to satisfy \$\begin{pmatrix}{a}{2} + 3\begin{pmatrix}{b}{2} = \begin{pmatrix}{10}{8} \end{pmatrix}. And another pair. If \$\vec{DA}\$ = \$\begin{pmatrix}{a}{a}\$ and \$\vec{OB}\$ = \$\begin{pmatrix}{b}{b}\$, convince me the vector \$\vec{AB}\$ = \$\begin{pmatrix}{b}{b}\$ - \$\begin{pmatrix}{a}{a}\$ Always/Sometimes/Never: \$\vec{AB}\$ = \$-\vec{BA}\$ 	KM: Vectors NRICH: Vectors CIMT: Vectors AQA: Bridging Units: Vectors Learning review GLOWMaths/JustMaths: Sample Questions Both Tiers GLOWMaths/JustMaths: Sample Questions Higher Tiers KM: 10M12 BAM Task	 Some pupils may try to write column vectors as fractions, i.e. (¹/₂) instead of (¹/₂) If OA = <u>a</u> and OB = <u>b</u>, some pupils may calculate the vector AB as <u>a</u> - <u>b</u> Some pupils may calculate 2(^a/_b) as (^{2a}/_b) 	

UNIT 18 – FURTHER VECTORS

GCSE EDEXCEL HIGHER TEXTBOOK

The Big Picture: Position and direction progression map

Return to overview

Key concepts (GCSE subject content statements)

• use vectors to construct geometric arguments and proofs

		Retuin to overview
Possible themes	Possible key learning points	
Use vectors to create geometric arguments and proofs Bring on the Maths: GCSE Higher Shape Organising Space: #7	Make deductions about situatMake deductions about situat	d present a proof involving vectors tions involving vectors that are multiples of other vectors tions involving vectors expressed using ratios tions involving vectors and parallel lines
Prerequisites	Mathematical language	Pedagogical notes
 Understand the concept of a vector Use diagrammatic representation of vectors Know and use different notations for vectors Add and subtract vectors Multiply a vector by a scalar 	Vector Scalar Constant Magnitude Collinear Notation $\underline{a} \text{ or } a$ (print) and \underline{a} (written) notation for vectors \overrightarrow{AB} notation for vectors Column vector notation $\binom{p}{q}$, p = movement right and q = movement up	 In Stage 10, pupils explored how addition, subtraction and multiplication is applied with vectors. This unit involves the use of vectors in geometric arguments and proofs. Vector is a latin word for 'carrier, transporter' derived from veho ('I carry, I transport, I bear'). Vectors have magnitude and direction. Scalar is from the latin 'scala' meaning 'a flight of steps, stairs, staircase'. Scalars have magnitude but no direction. NCETM: Glossary Common approaches All pupils either use underline notation, such as <u>a</u>, or AB notation when writing vectors
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions
 Convince me that <u>a</u> + <u>b</u> = <u>b</u> + <u>a</u> Always/Sometimes/Never: AB = <u>a</u> - <u>b</u>? 	AQA Maths: <u>Bridging the Gap Pocket 9: Vectors</u> AQA Maths: <u>Vectors</u> Learning review GLOWMaths/JustMaths: <u>Sample Questions Higher Tiers</u>	 Some pupils may not appreciate that if a vector is a multiple of another vector, then the two vectors are parallel Some pupils may try to write column vectors as fractions, i.e. (¹/₂) instead of (¹/₂) If OA = <u>a</u> and OB = <u>b</u>, some pupils may calculate the vector AB as <u>a</u> - <u>b</u>

Key concepts (GCSE subject content statements)

• construct equations that describe direct and inverse proportion

The Big Picture:	Ratio and Proportion	progression map
------------------	-----------------------------	-----------------

Possible themes	Possible key learning points		
 Explore differences between direct and inverse proportion Solve problems involving proportion Bring on the Maths: GCSE Higher Number Ratio and Proportion: #4, #5 	 Construct and use more complete Construct and use simple equatie Construct and use more complete 	 Construct and use simple equations describing direct proportion Construct and use more complex equations describing direct proportion Construct and use simple equations describing inverse proportion Construct and use more complex equations describing inverse proportion Solve problems involving direct and inverse proportion 	
Prerequisites	Mathematical language	Pedagogical notes	
 Interpret equations that describe direct or inverse proportion Understand that X is inversely proportional to Y is equivalent to X is proportional to 1/Y Solve problems which include finding the multiplier in a situation involving 	Direct proportion Inverse proportion Multiplier Notation ∝ - 'proportional to'	In Stage 9, pupils have learnt about solving problems involving direct and inverse proportion, including graphical and algebraic representations. In Stage 10, they learnt about interpreting equations that describe direct and inverse proportion. NCETM: <u>Glossary</u> NCETM: <u>Department Workshop – Proportional Reasoning</u> Common approaches <i>α</i> is read as "proportional to" <i>k</i> is used as the 'constant of proportionality' – i.e. if y <i>α</i> x then y = kx	
Reasoning opportunities and probing questions	Suggested activities	Possible misconceptions	
 another pair. And another pair Show me two pairs of quantities that are inversely proportional. And another, and another, Convince Kenny that 'X is inversely proportional to Y' is equivalent to 'X is 	NRICH: <u>Triathlon and Fitness</u> OCR Maths: <u>Lesson Element – Inverse Proportion</u> AQA Maths: <u>Ratio, Proportion and Change</u> Learning review GLOWMaths/JustMaths: <u>Sample Questions Higher Tiers</u>	 Some pupils may think that y is inversely proportional to x means y = x/k Some pupils may interpret inverse proportion relationships as direct proportion Some pupils may think that the proportionality constant has to be greater than 1. 	

UNIT 19 – TRANSFORMATIONS OF GRAPHS

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

The Big Picture: Algebra progression map

- recognise, sketch and interpret graphs of exponential functions y = k^x for positive values of k, and the trigonometric functions (with arguments in degrees) y = sin x, y = cos x and y = tan x for angles of any size
- sketch translations and reflections of a given function

			Return to overview
Possible themes • Explore graphs of exponential functions • Explore graphs of trigonometric functions • Investigate the connections between graphs of functions and their translat Bring on the Maths: GCSE Higher Algebra Investigating Graphs I: #9 Investigating Graphs II: #6 Prerequisites • Recognise, plot and interpret exponential graphs • Plot graphs of linear, quadratic, cubic and reciprocal functions • Find sines, cosines and tangents of given angles		 Plot and use the key features of the Plot and use the key features of the Plot and use the key features of the Know the effects of transforming th Solve simple problems involving th Solve more complex problems invo 	e graph of an exponential function, $y = k^x$, for positive values of k e graph of the trigonometric function $y = \sin x$ e graph of the trigonometric function $y = \cos x$ e graph of the trigonometric function $y = \tan x$ ne graph $y = f(x)$: $f(ax)$, $af(x)$, $f(x) + a$, $f(x + a)$, $y = f(-x)$ and $y = -f(x)$ e transformation of graphs
Reasoning opportunities and probing questions	Suggested activities		x, y = cos x and y = tan x for angles of any size Possible misconceptions
 Draw the graph of y = 1^x. Convince me it is an exponential function What's the same, what's the different: the graphs of y = sin x, y = cos x and y = tan x? Show me the graph of an exponential function. And another, and another, Convince Kenny that the graph of f(x - 2) is a translation of the graph f(x) by by Always/Sometimes/Never: The graph of an exponential function, y = k^x for positive values of k, does not intersect with the x-axis 	NRICH: What's that graph? AQA Maths: Transforming Graphs AQA Maths: Further Sketching Graphs NRICH: Parabolic Patterns NRICH: Tangled Trig Graphs Don Steward: Graph Transforms Learning review KM: <u>11M5 BAM Task</u> GLOWMaths/JustMaths: Sample Questic		 Some pupils may think that the graphs of exponential functions y = k^x for positive values of k meet or intersect the x-axis. Some pupils may think the graph of f(x - 2) is a translation of the graph f(x) by

UNIT 19 – RATES OF CHANGE

GCSE EDEXCEL HIGHER TEXTBOOK

Key concepts (GCSE subject content statements)

• apply the concepts of average and instantaneous rate of change (gradients of chords and tangents) in numerical, algebraic and graphical contexts)

			Return to overview
Possible themes		Possible key learning points	
 Manipulate quadratic functions Solve problems involving graphs of quadratic functions Explore rates of change Bring on the Maths: GCSE Higher Algebra Solving Quadratic Equations: #2, #12 		 Apply the concept of average rate of change in numerical, algebraic and graphical contexts Apply the concept of instantaneous rate of change in numerical, algebraic and graphical contexts Solve practical problems involving rates of change 	
Prerequisites	Mathematical language		Pedagogical notes
 Complete the square for a given quadratic expression Know the meaning of roots, intercepts and turning points Identify and interpret roots, intercepts, turning points of quadratic functions graphically Interpret the gradient at a point on a curve as the instantaneous rate of change Know the effects of transforming the graph y = f(x): f(x) + a and f(x + a) 	Function Complete the square Deduce Root Turning point, minimum, maximum Rate of change Chord Tangent Average rate of change Instantaneous rate of change Notation The form $(x + p)^2 - q$ usually implies that	at completing the square is required	The use of dynamic geometry is essential for this unit to help pupils make connections between the resulting algebraic expression from completing the square and the graph of the quadratic function. This unit provides a good opportunity to reinforce the teaching of transformations of graphs y = f(x): f(x) + a and f(x + a) as explored in the 'Stage 11 Visualising I' unit. NCETM: <u>Glossary</u> Common approaches All pupils experience dynamic graphing software; e.g. Autograph, throughout this unit
Reasoning opportunities and probing questions	Suggested activities		Possible misconceptions
 Convince Kenny that the co-ordinates of the turning point of y = (x – a)² – b are (a , -b) Always/Sometimes/Never: The y value of the co-ordinates of a turning point of a quadratic function is negative Jenny says 'if you can't factorise a quadratic then you can't find the roots of the quadratic algebraically'. Do you agree with Jenny? Explain your answer. 	AQA Maths: <u>Further equations and gra</u> AQA Maths: <u>Sketching Graphs</u> AQA Maths: <u>Gradients and rate of char</u> Resourceaholic: <u>Quadratics</u> Resourceaholic: <u>Tangents and Areas</u> Learning review KM: <u>11M4 BAM Task</u> GLOWMaths/JustMaths: <u>Sample Quest</u>	nge	 Some pupils may think that the y value of the co-ordinates of a turning point of a quadratic function is always negative. Some pupils may think the co-ordinates of the turning point of y = (x - a)² - b are (-a, -b) Some pupils may think the roots of the quadratic y = (x + a)(x + b) are a and b Some students may think that (x + p)² - q implies that p must be negative

